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Instructions:
Please write your name on every page.

You may use the back side of every page for rough work or writing answers.

Maximum time is 2 hours and 30 min.

Show all your work. Correct answers with insufficient or incorrect work will

not get any credit.
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1.(a) Suppose A = (ai,j)n×n is a tri-diagonal matrix (i.e. ai,j = 0 whenever |i−j| ≥ 2). Assuming
you never need to swap rows, it is known that Gaussian elimination to solve Ax = b for a given
column vector bn×1, requires O(nk) flops. Find k.

(b)Suppose you want to compute

x1 = 1 −

√

1 +
1

1020
, x2 = 1 +

√

1 +
1

1020
.

There is a loss of significance in one of the above compuation. Which one of x1 and x2 will suffer
from this loss of significance ? Suggest a method to avoid this difficulty.



February 22nd, 2012 Name (Please Print)
CS II- Midterm I - Semester II 11/12 Page 3 of 7.

2 Below are two function files. Please fill in the blanks so as to ensure that the programs run
correctly in OCTAVE.

(a)

function ssum = sinser(x,tol,n)

% sinser Evaluate the series representation of the sine function

%

% Synopsis: ssum = sinser(x)

% ssum = sinser(x,tol)

% ssum = sinser(x,tol,n)

%

% Input: x = argument of the sine function, i.e., compute sin(x)

% tol = (optional) tolerance on accumulated sum. Default: tol = 5e-9

% Series is terminated when abs(T_k/S_k) < delta. T_k is the

% kth term and S_k is the sum after the kth term is added.

% n = (optional) maximum number of terms. Default: n = 15

%

% Output: ssum = value of series sum after nterms or tolerance is met

if nargin < ______, tol = 5e-9; end

if nargin < ______, n = 15; end

term = ______; ssum = ______; % Initialize series

fprintf(’Series approximation to sin(%f)\n\n k term ssum\n’,x);

fprintf(’%3d %11.3e %12.8f\n’,1,term,ssum);

for k=3:2:(2*n-1)

term = -term * x*x/(k*(k-1)); % Next term in the series

ssum = ______;

fprintf(’%3d %11.3e %12.8f\n’,k,term,ssum);

if abs( ______)<tol, ______; end % True at convergence

end

fprintf(’\nTruncation error after %d terms is %g\n\n’,(k+1)/2,abs( ______));
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(b)

{ function r = ______________________(fun,x0,xtol,ftol,verbose)

% newton Newton’s method to find a root of the scalar equation f(x) = 0

%

% Synopsis: r = newton(fun,x0)

% r = newton(fun,x0,xtol)

% r = newton(fun,x0,xtol,ftol)

% r = newton(fun,x0,xtol,ftol,verbose)

%

% Input: fun = (string) name of mfile that returns f(x) and f’(x).

% x0 = initial guess

% xtol = (optional) absolute tolerance on x. Default: xtol=5*eps

% ftol = (optional) absolute tolerance on f(x). Default: ftol=5*eps

% verbose = (optional) flag. Default: verbose=0, no printing.

%

% Output: r = the root of the function

if nargin < ___, xtol = 5*eps; end

if nargin < ___, ftol = 5*eps; end

if nargin < ___, verbose = 0; end

xeps = max(xtol,5*eps); feps = max(ftol,5*eps); % Smallest tols are 5*eps

if verbose

fprintf(’\nNewton iterations for %s.m\n’,fun);

fprintf(’ k f(x) dfdx x(k+1)\n’);

end

x = ____; k = ____; maxit = 15; % Initial guess, current and max iterations

while k <= maxit

k = k + 1;

[f,dfdx] = feval(fun,x); % Returns f( x(k-1) ) and f’( x(k-1) )

dx = ______;

x = _______;

if verbose, fprintf(’%3d %12.3e %12.3e %18.14f\n’,k,f,dfdx,x); end

if ( abs(f) < _____ ) | ( abs(dx) < ______ ), r = _____; ________; end

end

warning(sprintf(’root not found within tolerance after %d iterations\n’,k));

}
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3. Find the PA = LU factorization (i.e perform LU factorisation with partial pivot) of the

matrix A =







1
2 1 −1
1 −1 0
0 1 1






.
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4. Consider the following:

Algorithm:
Input f

Initialise n ,a, b, such that f(a) and f(b) have

opposite signs and a < b

x(0)= a

x(1)= b

k =1

while k <= n

x(k+1) = x(k-1) - f(x(k-1))x(k) - x(k-1)
f(x(k))−f(x(k−1))

if sign(f(x(k+1))) = sign(f(a))

a = x(k+1)

elseif sign(f(x(k+1))) = sign(f(b))

b = x(k+1)

end k = k +1

end

(a) Describe what the algorithm is doing in words with the help of a picture.

(b) Construct an example of f (picture is enough) such that f(a) < 0 and f(b) > 0. The above
algorithm keeps b fixed and moves the left end point of interval closer to the desired conclusion.
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5. Prove the following theorem: Suppose g : [a, b] → [a, b] and g ∈ C1[a, b] with | g′(x) |< 1 for
x ∈ [a, b]. Let x0 ∈ [a, b] and xk = g(xk−1), k ≥ 1. Show that ∃ξ ∈ [a, b] such that

lim
k→∞

xk = ξ, and g(ξ) = ξ.


